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ABSTRACT

The aim of this simulation study was to investigate 
whether it is possible to detect the effect of genomic 
preselection on Mendelian sampling (MS) means or 
variances obtained by the MS validation test. Genomic 
preselection of bull calves is 1 additional potential 
source of bias in international evaluations unless ade-
quately accounted for in national evaluations. Selection 
creates no bias in traditional breeding value evaluation 
if the data of all animals are included. However, this is 
not the case with genomic preselection, as it excludes 
culled bulls. Genomic breeding values become biased 
if calculated using a multistep procedure instead of, 
for example, a single-step method. Currently, about 
60% of the countries participating in international bull 
evaluations have already adopted genomic selection 
in their breeding schemes. The data sent for multiple 
across-country evaluation can, therefore, be very het-
erogeneous, and a proper validation method is needed 
to ensure a fair comparison of the bulls included in 
international genetic evaluations. To study the effect of 
genomic preselection, we generated a total of 50 repli-
cates under control and genomic preselection schemes 
using the structures of the real data and pedigree from 
a medium-size cow population. A genetic trend of 15% 
of the genetic standard deviation was created for both 
schemes. In carrying out the analyses, we used 2 different 
heritabilities: 0.25 and 0.10. From the start of genomic 
preselection, all bulls were genomically preselected. 
Their MS deviations were inflated with a value cor-
responding to selection of the best 10% of genomically 
tested bull calves. For cows, the MS deviations were 
unaltered. The results revealed a clear underestimation 

of bulls’ breeding values (BV) after genomic preselec-
tion started, as well as a notable deviation from zero 
both in true and estimated MS means. The software 
developed recently for the MS validation test already 
produces yearly MS means, and they can be used to 
devise an appropriate test. Mean squared true MS of 
genomically preselected bulls was clearly inflated. After 
correcting for the simulated preselection bias, the true 
genetic variance was smaller than the parametric value 
used to simulate BV, and also below the variance based 
on the estimated BV. Based on this study, the lower the 
trait’s heritability, the stronger the bias in estimated 
BV and MS means and variances. Daughters of genomi-
cally preselected bulls had higher true and estimated 
BV compared with the control scheme and only slightly 
elevated MS means, but no effect on genetic variances 
was observed.
Key words: genomic preselection, Mendelian sampling, 
evaluation bias, data validation

INTRODUCTION

Unbiased comparison of dairy bulls among countries 
ensures efficient genetic progress of herds for dairy 
farmers and fair trade for breeding companies selling 
the best-ranking bulls on the global market. The bulls 
included in Interbull international evaluations receive 
EBV in each participating country’s own unit, scale, 
and base, which enables comparisons of national and 
foreign sires. Interbull international evaluations employ 
multiple across-country evaluations (MACE), with na-
tional evaluation results, such as breeding values (BV) 
and transmitting abilities (TA), as input. The MACE 
has been found to be sensitive to the quality of national 
evaluation models and, consequently, to the BV or TA 
that countries provide for inclusion in Interbull inter-
national sire evaluations (e.g., Ducrocq et al., 2003). 
As observed in many studies, MACE is exposed to and 
affected by biased genetic trends and biased genetic 
variance trends in the national evaluations. Bulls from 
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countries that overestimate their genetic trends, as well 
as bulls from birth year classes with inflated genetic 
variances, gain unfair advantage (Weigel et al., 1996; 
Van Doormaal et al., 1999; Gengler et al., 2000; Miglior 
et al., 2002; Ducrocq et al., 2003).

The era of genomic selection has given rise to a new 
source of bias: namely, bias due to genomic preselection 
of young bulls unless adequately accounted for in na-
tional genetic evaluations. The BV of each animal is es-
timated by mixed model equations (MME), including 
the parental average, the animal’s own yield deviation, 
and the contribution of its offspring. Sorensen and Ken-
nedy (1984) found that selection caused no bias in tra-
ditional genetic evaluation, provided that the data and 
pedigree of all animals were included; however, that is 
not the case with genomic preselection if data on culled 
bulls are excluded. Genomic enhanced breeding values 
(GEBV) also become biased if calculated using a mul-
tistep procedure (Patry and Ducrocq, 2011b; Vitezica 
et al., 2011). This procedure first involves traditional 
BV estimation to obtain pseudo-observations for the 
genotyped animals, utilizing their phenotyped relatives, 
after which these pseudo-observations are combined 
with marker information to determine the genotyped 
animals’ GEBV (e.g., VanRaden, 2008; Hayes et al., 
2009). The pseudo-observations are no longer a random 
sample of Mendelian sampling (MS) and the effect of 
selection cannot be accounted for, as only a subset of 
the available data are used to obtain GEBV (Ducrocq 
and Liu, 2009; Vitezica et al., 2011).

To solve the inherent source of bias introduced by 
genomic preselection, researchers have worked hard 
to reap the benefits of genomics while at the same 
time overcoming the challenges it brings. Indeed, new 
methods have been developed that are unbiased or at 
least reduce bias. For instance, one of the suggested ap-
proaches transforms GEBV into weighted deregressed 
performances, which are then used together with the 
original phenotypes in BLUP evaluations, allowing 
the inclusion of culled bulls (Ducrocq and Liu, 2009; 
Patry and Ducrocq, 2011a). The most elegant option, 
although computationally more demanding, is a single-
step method (e.g., Aguilar et al., 2010; Christensen and 
Lund, 2010), which is an extension of traditional MME. 
It adds a new source of information, genotypes, to the 
traditional data from the animal itself, its parents, and 
its offspring. For this method, genotyped as well as 
nongenotyped animals are included in the model, and 
unbiasedness is achieved by including culled bulls. De-
velopment efforts to ease the computational burden of 
the single-step method are ongoing in several countries, 
and various solutions have already been suggested (e.g., 
Misztal et al., 2014; Taskinen et al., 2017).

Currently, 18 of the 31 countries (60%) participating 
in international bull evaluations have already adopted 
genomic selection in their breeding schemes: some of 
them only for production traits, some for a wider va-
riety of traits. So far, only 2 of the 18 countries have 
implemented the single-step approach, whereas the 
majority rely on the original multistep approach (In-
terbull, 2017). This makes the data sent for MACE 
from different countries very heterogeneous and creates 
a real risk of bias due to genomic preselection.

In a simulation study with 3 countries, Patry et al. 
(2013) observed that genomically preselected bulls from 
countries that send biased data for international evalu-
ations were penalized both for the biased trait and for 
correlated traits of other countries. In the context of 
MACE, the correlated trait, although the same bio-
logical trait, is treated as a different trait by various 
countries, allowing less-than-unity genetic correlation. 
The penalizing effect was to some extent also trans-
mitted to the relatives of the selected bulls. Patry et 
al. (2013) further showed that failure to account for 
genomic preselection in national evaluations had a 
more severe effect than provision of incomplete (ex-
cluding culled animals) but unbiased data for interna-
tional evaluations. The current heterogeneous situation 
among participating countries makes it very difficult 
to predict the overall effects of genomic preselection on 
the accuracy of MACE. VanRaden and Wright (2013) 
pointed out that bias is likely to increase in the near 
future, as elite young bulls are increasingly mated to 
elite genotyped cows or to cows with many good sons. 
Therefore, methods to account for genomic selection in 
national evaluations are needed, as well as for proper 
validation methods to detect possibly biased EBV.

A new test to validate the consistency of MS variance 
was recently developed and has been approved among 
the compulsory validation tests for countries partici-
pating in international sire evaluations (Tyrisevä et al., 
2018). A tailored program for conducting the analyses 
is also available. The validation procedure estimates 
within-year genetic variances utilizing information on 
animals’ MS values and also tests for a possible trend 
and outliers in the estimated variances.

The aim of our simulation study was to establish 
whether it is possible to use the new MS validation test 
to detect the bias caused by genomic preselection of 
young bulls either from the estimates of within-year MS 
means or variances. Theoretically, the variance of true 
breeding values of selected individuals is expected to 
decrease as a result of genomic preselection (Falconer 
and Mackay, 1996); further, the mean of MS deviations 
for selected individuals is expected to differ from zero 
(Patry and Ducrocq, 2011b).
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MATERIALS AND METHODS

Simulation Method

To create data sets with a desired genetic trend, we 
used a new simulation method described for the first 
time by Tyrisevä et al. (2013). In this method, the de-
pendent variable in the original data is first replaced 
with pseudo-observations having the desired annual 
trend, and these pseudo-observations are then used to 
predict pseudo-BV expressing the genetic trend. The 
pseudo-BV become synchronized with the parent and 
progeny averages and the expected yearly means of BV. 
Together with the pedigree data, these pseudo-BV are 
then used to simulate true BV for each animal. Hence, 
the selection differential caused by the genetic trend 
will be transmitted in the MS part of the animal’s BV. 
To ensure that the MS part of the parental BV is not 
regressed toward yearly means, the observations of par-
ent animals are set as missing in the first step.

In the next step, true breeding values (TBV) are 
generated recursively generation by generation so that 
the BV of each animal consists of the parental mean, 
the random MS sampled from the normal distribution, 
and the MS created in the first step and carrying the 
genetic trend. Finally, the other random effects in the 
model, including residual effects, are generated and 
then summed to form observations.

Normally, MS variance σϕ
2( ) can be expressed as 

σ σϕ
2 2= djj u , where djj is the diagonal of an animal j in 

the matrix D for Mendelian sampling in the decompo-
sition of A = LDLT, where L is the lower unitriangular 
transition matrix, and σu

2 is the additive genetic vari-
ance. However, this property σ σϕ

2 2=( )djj u  no longer ap-
plies when the expectation of MS differs from zero. 
Mendelian sampling variance increases with the vari-
ance of the MS created in the first step, also leading to 
inflated BV variance. To avoid this, the random MS 
values were corrected when TBV were generated. The 
variance correction was carried out as 

 σ σϕ
2 21= −( )k djj u . 

According to the standard formula by Falconer and 
Mackay (1996), k = i(i − x), where i is the selection 
intensity and x is the deviation of the truncation point 
from the mean in standard deviation units. The selec-
tion intensity can be further formulated as i = E[φ]/σφ, 
where E[φ] is the expected MS value. As (1 − k) is an 
exponential function of i, a satisfactory approximation 
can be obtained by a linear fit on its logarithmic value. 
A good fit was obtained with the formula

 (1 − k)j = Exp(−1.18969|i| + 0.10805i2), 

where |i| is the absolute value of i.

Data Used for Simulations

A field data set of 754,600 Danish Holstein cows from 
2,000 herds was sampled for the simulations. The time 
interval covered 20 yr, and the pedigree data comprised 
1.2 million animals. Only the herd and pedigree struc-
ture were retained from the original data, and an arti-
ficial trait was simulated. One record was generated for 
each cow. The model applied in both steps included a 
fixed herd effect as well as random additive genetic and 
residual effects. To generate the pseudo-BV, we used a 
heritability of 0.05 to ensure that the base level of the 
MS means in each birth year class remained close to 
zero. In simulating the final data sets, we applied 1 of 2 
heritabilities: 0.10 or 0.25. A genetic variance of 1,650 
was assumed for all analyses.

Study Design 

First, we created observations with an annual trend 
of 15% of the genetic standard deviation to be used in 
solving pseudo-BV and in calculating MS deviations. 
This was done only once and used for all data replicates 
thereafter. Second, we created control and genomic pre-
selection (GPS) schemes with 50 data replicates each. 
The same seeds were used for the replicates in both 
schemes. To mimic a genomic preselection in the GPS 
scheme, we assumed all bulls from the birth year class 
2000 onwards to be genomically preselected. The MS 
values obtained from the pseudo-BV generation step 
for these bulls were increased with a MS+ value cal-
culated as

 MS i r+ = × × = × × =σϕ 1650 2 1 755 0 60 31, / . . , 

where r describes the accuracy of the predictions. The 
MS+ value corresponds to selection of the best 10% of 
genomically tested bull calves. The MS values of cows 
were unaltered.

Analyses

We calculated TBV and EBV under both schemes 
and used the results to obtain within-year means of 
TBV and EBV. The simulations were carried out with 
MiX99 software (MiX99 Development Team, 2015), 
modified to generate TBV using the generated MS 
distribution with a nonzero expectation. We further 
determined the bias (EBV minus TBV) as well as the 
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ranking of top 10% of bulls from birth years around 
the start of GPS. The generated TBV and EBV and 
reliabilities of TBV and EBV were used to calculate 
within-year true genetic variance (TGV; i.e., mean 
squared TMS) and estimated genetic variance (EGV) 
with the MS variance validation program (Tyrisevä et 
al., 2018), which was also used to obtain within-year 
true and estimated MS (TMS, EMS) means. Under 
the GPS scheme, TGV was additionally calculated by 
correcting for the inflation of variance (312 = 961) due 
to the preselection bias (TGV*). The approximated 
EBV reliabilities were computed by the method of 
Misztal and Wiggans (1988), implemented in the 
Apax99 software (MiX99 Development Team, 2015). 
The reliabilities of TBV were 1.0.

RESULTS AND DISCUSSION

Genetic Trend and the Effect of Genomic 
Preselection on BV

Under the control scheme, the pseudo- and true BV 
for bulls displayed very similar genetic trends (Table 1), 

with the same yearly genetic progress (7.1 units/year). 
Further, the within-year means of EBV estimated from 
the generated data sets followed the underlying TBV 
very closely, with a genetic progress of 7.0 units/year. 
The adoption of GPS in 2000 produced a steep increase 
in the level of TBV (Table 1, Figure 1). Genetic prog-
ress for TBV was clearly higher under the GPS scheme 
than the control scheme: 9.9 units/year; yet, only part 
of this genetic progress, 8.5 units/year, was detected 
when EBV were predicted from the generated data 
sets. As a result of GPS being unaccounted for in the 
evaluations, bulls’ yearly EBV means began to increase 
before GPS started, as the superiority of GPS bulls 
was transferred to their parents’ EBV. This becomes 
evident when EBV means of parents of the bulls are 
studied (Table 1); they were clearly overestimated and 
notably biased compared with the control scheme, even 
before start of GPS.

The small detected bias under the control scheme in 
bulls was possibly due to the unaccounted-for inbreed-
ing effects (Table 1). In contrast, in the GPS scheme 
the bias grew steadily until the start of GPS, after 

Table 1. Within-year means of pseudo, true (TBV), and estimated (EBV) breeding values, as well as average biases expressed as EBV − TBV1

Year Pseudo

Control

 

GPS

TBV EBV Bias TBV EBV Bias

Bulls   
 1995 21.53 21.62 ± 0.71 22.24 ± 0.68 0.62 ± 0.151  21.62 ± 0.71 23.58 ± 0.68 1.95 ± 0.150
 1996 31.28 31.44 ± 0.72 31.82 ± 0.69 0.38 ± 0.138  31.44 ± 0.72 33.55 ± 0.69 2.11 ± 0.139
 1997 37.85 38.45 ± 0.81 38.60 ± 0.77 0.15 ± 0.146  38.45 ± 0.81 40.73 ± 0.77 2.28 ± 0.147
 1998 45.87 45.98 ± 0.77 46.15 ± 0.76 0.18 ± 0.150  45.98 ± 0.77 48.55 ± 0.75 2.58 ± 0.149
 1999 48.51 49.18 ± 0.78 49.21 ± 0.77 0.04 ± 0.136  49.18 ± 0.78 51.89 ± 0.77 2.71 ± 0.137
 2000 56.39 56.63 ± 0.78 56.55 ± 0.78 −0.08 ± 0.155  87.73 ± 0.77 72.31 ± 0.77 −15.42 ± 0.123
 2001 64.67 65.39 ± 0.79 65.22 ± 0.76 −0.17 ± 0.156  96.24 ± 0.78 81.60 ± 0.77 −14.64 ± 0.118
 2002 70.05 70.56 ± 0.81 70.10 ± 0.79 −0.46 ± 0.176  101.79 ± 0.78 87.93 ± 0.78 −13.87 ± 0.143
 2003 75.16 75.64 ± 0.78 74.89 ± 0.78 −0.76 ± 0.193  107.06 ± 0.78 93.66 ± 0.78 −13.41 ± 0.151
Sires of bulls   
 1995  47.22 ± 0.74 48.30 ± 0.70 1.08 ± 0.176  47.22 ± 0.74 50.21 ± 0.70 2.99 ± 0.177
 1996  56.83 ± 0.72 58.18 ± 0.69 1.35 ± 0.165  56.83 ± 0.72 60.78 ± 0.68 3.95 ± 0.163
 1997  62.70 ± 0.93 63.61 ± 0.92 0.91 ± 0.159  62.70 ± 0.93 66.73 ± 0.92 4.04 ± 0.161
 1998  70.54 ± 0.92 71.62 ± 0.91 1.07 ± 0.178  70.54 ± 0.92 75.32 ± 0.91 4.77 ± 0.174
 1999  70.73 ± 0.93 71.37 ± 0.94 0.64 ± 0.169  70.73 ± 0.93 75.90 ± 0.94 5.17 ± 0.163
 2000  77.36 ± 0.88 77.84 ± 0.87 0.48 ± 0.195  77.36 ± 0.88 90.24 ± 0.87 12.87 ± 0.186
 2001  86.64 ± 0.82 86.98 ± 0.80 0.34 ± 0.155  86.64 ± 0.82 101.04 ± 0.80 14.40 ± 0.151
 2002  87.49 ± 0.84 87.68 ± 0.85 0.19 ± 0.221  87.99 ± 0.84 99.81 ± 0.84 11.82 ± 0.210
 2003  87.77 ± 0.86 87.36 ± 0.90 −0.41 ± 0.259  88.41 ± 0.86 100.08 ± 0.88 11.67 ± 0.239
Dams of bulls   
 1995  −5.62 ± 0.72 −5.00 ± 0.72 0.62 ± 0.159  −5.62 ± 0.72 −3.77 ± 0.72 1.84 ± 0.159
 1996  4.34 ± 0.75 4.73 ± 0.75 0.39 ± 0.158  4.34 ± 0.75 6.28 ± 0.75 1.94 ± 0.156
 1997  12.87 ± 0.74 13.51 ± 0.70 0.65 ± 0.142  12.87 ± 0.74 15.63 ± 0.70 2.77 ± 0.142
 1998  20.33 ± 0.74 20.68 ± 0.70 0.35 ± 0.163  20.33 ± 0.74 23.20 ± 0.70 2.87 ± 0.161
 1999  25.32 ± 0.68 25.76 ± 0.70 0.45 ± 0.164  25.32 ± 0.68 28.83 ± 0.69 3.51 ± 0.159
 2000  34.07 ± 0.72 34.33 ± 0.72 0.26 ± 0.171  34.07 ± 0.72 42.53 ± 0.72 8.45 ± 0.162
 2001  41.37 ± 0.79 41.80 ± 0.77 0.43 ± 0.172  41.37 ± 0.79 51.30 ± 0.77 9.93 ± 0.174
 2002  50.90 ± 0.80 50.99 ± 0.80 0.09 ± 0.190  50.90 ± 0.80 63.84 ± 0.79 12.94 ± 0.188
 2003  60.42 ± 0.78 60.32 ± 0.76 −0.09 ± 0.181  60.42 ± 0.78 74.88 ± 0.76 14.47 ± 0.173
1For the means of TBV, EBV, and the bias, the SE are also shown. Means are shown for bulls and their sires and dams. The year refers to the 
birth year class of bulls; that is, for sires and dams the year is their son’s birth year. The means of pseudo breeding values were derived from 
one data set, whereas the results from the control and genomic preselection (GPS) schemes were averaged over 50 replicates. GPS started in 
2000. A heritability of 0.25 was used.



Journal of Dairy Science Vol. 101 No. 4, 2018

EVALUATION BIAS DUE TO GENOMIC PRESELECTION 3159

which a steep increase occurred due to underestimated 
BV of bulls. The underestimation of genetic progress in 
the GPS scheme was even more pronounced when EBV 
were predicted from data sets with lower heritability 
(results not shown).

A slight increase in the yearly means of cows’ TBV 
and EBV could also be detected 2 yr after the start of 
GPS of bulls, when the first GPS bulls became sires 
(Figure 1). The results are in a good accordance with 
those reported by Patry and Ducrocq (2011b).

Figure 1. Within-year means of true and estimated breeding values (BV) for bulls and cows from the control and genomic preselection (GPS) 
schemes. Means were averaged over 50 replicates. A heritability of 0.25 was used. Color version available online.
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Effect of Genomic Preselection on MS Means

Both TMS and EMS means for bulls were very close 
to zero under the control scheme (Figure 2). Under the 
GPS scheme, the TMS means were identical with those 
from the control scheme until the start of GPS, after 
which an expected increase of +31 was observed. The 
EMS means deviated clearly from zero following the 
start of GPS. However, the increase was only around 
1/4 of that seen in the TMS means, which corresponded 
to 1/2 of the observed increase in bulls’ EBV due to 

GPS. For cows, both the TMS and EMS means were 
practically zero under the 2 schemes, although a minor 
effect on EMS means could be detected after the adop-
tion of GPS of bulls (Figure 2). Patry and Ducrocq 
(2011b) reported similar results from their simulations.

When the analyses were repeated using the same 
yearly genetic trend but with lower heritability (0.10), 
the EMS means still deviated from zero after GPS 
started but the effect was smaller compared with analy-
ses with higher heritability: only 1/6 of that found for 
TMS means. This is a logical outcome, as the observed 

Figure 2. Within-year means of true and estimated Mendelian sampling (MS) terms for bulls and cows from the control and genomic prese-
lection (GPS) schemes. Means were averaged over 50 replicates. A heritability of 0.25 was used. Color version available online.
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increase in bulls’ EBV due to GPS was smaller when a 
heritability of 0.10 instead of 0.25 was applied. Thus, 
the bias was larger compared with the heritability 0.25 
setting.

Effect of Genomic Preselection on Genetic Variances

For cows, the TGV and EGV under both schemes 
were virtually identical with the variance used for BV 
simulations (Figure 3). The similarity of genetic vari-
ance from the control scheme with that applied in the 

simulations implies that the formula used for variance 
correction had a good fit.

On the whole, the level of genetic variance was a 
bit lower for bulls than for cows (Figure 3). With 0.25 
heritability, the EGV from the control scheme, averaged 
over 50 replicates and all the studied years, was 1,509. 
At least 2 reasons for this can be found. The overall 
level of EMS means for bulls deviated slightly from 
zero compared with cows (Figure 2); this was further 
reflected in the level of estimated genetic variance (E. 
A. Mäntysaari, A.-M. Tyrisevä, and I. Strandén, Natu-

Figure 3. Within-year means of true and estimated genetic variances (Gvar) for bulls and cows from control and genomic preselection (GPS) 
schemes. For the GPS scheme, both original true values and those corrected for the simulated preselection bias are shown. Means were averaged 
over 50 replicates. A heritability of 0.25 was used. Variance used for breeding value simulations is marked with a solid black line. Color version 
available online.
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ral Resources Institute Finland, Jokioinen, Finland, 
unpublished data). Another reason for the difference 
between cows and bulls is that selection is mainly car-
ried out through bulls, which reduces variance of their 
TBV.

For bulls, a slight descending trend was observed in 
TGV (−0.6%) and EGV (−0.3%) under the control 
scheme. Inbreeding may be one reason for this, as it 
can cause a decrease in genetic variance as found by 
Tyrisevä et al., (2018). Immediately when GPS started, 
a distinct increase occurred in TGV (Figure 3) as a 
response to the elevated TMS means. After GPS, the 
level of TGV remained relatively steady throughout 
the studied time period. However, when TGV was cor-
rected for the simulated preselection bias (equal to 312, 
Figure 3) the adoption of GPS created a clear decline in 
TGV* for preselected bulls. The TGV* was the lowest 
of all variances shown, consistent with the theoretical 
expectation (Falconer and Mackay, 1996). The effect 
of GPS on EGV was reverse to the TGV and clearly 
smaller in magnitude. However, when compared with 
the TGV*, EGV under the GPS scheme was higher due 
to the inflated EMS of genomically preselected bulls 
(Figures 2 and 3). Before the adoption of GPS, the 
level of EGV between the control and GPS schemes 
differed, indicating the same type of leverage effect as 
seen in the means of bulls’ EBV. When GPS started, 
the level of EGV first increased slightly and then slowly 
decreased, reaching the level of TGV* in the fourth 
year under GPS. The increase in variance at the start 
of GPS reflected an inflated MS variance. This is be-
cause the expectations of MS were greater than the pa-
rental averages, whereas the EMS values were regressed 
toward parental averages due to below 1.0 accuracy of 
bull EBV. In the years following GPS adoption, the 
difference between expectations of MS and parental 
averages narrowed, as the genetic trend of the parents 
grew stronger due to an increased bias in their EBV 
(Table 1). This, in turn, reduced the inflation of EMS 
variance, and by the year 2003 resulted in estimates 
close to TGV*.

By and large, all consequences of GPS on EGV were 
small for bulls and hard to disentangle from other 
sources contributing to trends in EGV. The descend-
ing trend for EGV in the GPS scheme and with 0.25 
heritability was −1.5%. The decreasing trend reached a 
level of −2% for 14 replicates out of 50 (28%), whereas 
in the control scheme only 1 replicate out of 50 attained 
that level. The ±2% trend in EGV is the threshold of 
acceptance suggested in the MS variance test (Tyrisevä 
et al., 2018).

Decreasing the heritability from 0.25 to 0.10 influ-
enced the overall level of genetic variance for bulls 
to some extent. The average EGV from the control 

scheme was 1,565. Due to GPS, the scenario with 0.10 
heritability produced similar patterns as with 0.25 heri-
tability, although smaller in magnitude. The descend-
ing trend in EGV was only −0.8% (−0.1% under the 
control scheme), and only 2 out of 50 replicates reached 
the −2% level (none in the control scheme). These 
results indicate that the higher the heritability, the 
stronger the decreasing trend in genetic variance due to 
unaccounted GPS. It must be kept in mind, however, 
that the genetic trend simulated in our study (15% of 
genetic SD) was identical for both heritability settings. 
Even though it enabled an identical and comparable 
setting, such a high genetic trend for low heritability 
traits may be unrealistic in practice.

Effect of Genomic Preselection  
on Top-Ranking Bulls

Differences in the ranking of bulls based on their TBV 
(TRANK) and EBV (ERANK) under the control 
scheme were minor, whereas larger differences were ob-
served under the GPS scheme (Table 2). A comparison of 
ERANK with TRANK in the GPS scheme showed that 
birth year classes 2001 to 2002 were underrepresented. 
With TRANK, birth year classes before 2000 provided 
34.5% of top-ranking bulls in the control scheme and 
12.3% under the GPS scheme. With ERANK, their 
proportion was almost the same as with TRANK in 
the control scheme (34 vs. 34.5%), whereas in the GPS 
scheme it clearly grew too large (14.9 vs. 12.3%). Hence, 
the difference in EBV means for bulls born before and 
after GPS was underestimated, resulting in a ranking 
with too few bulls from the underestimated birth year 
classes of the youngest bulls and too many from the 
overestimated classes of the oldest bulls, in accordance 
with the findings in the EBV means of parents and 
their sons in Table 1. The results for the trait with 0.10 
heritability were very similar, but ERANK under the 
GPS scheme gave an even greater proportion of top 
bulls born before GPS. This was probably due to more 
severe underestimation of the genetic trend than with 
the higher heritability trait.

CONCLUSIONS

Our results revealed a clear underestimation of bulls’ 
EBV after the start of GPS accompanied with an over-
estimation of their parents’ EBV. This was further mir-
rored to the ranking of bulls. Bulls born after the adop-
tion of GPS were underrepresented in the top ranks 
if ranking was based on EBV. Further, we detected 
a notable deviation from zero both in TMS and EMS 
means of bulls. The software developed recently for the 
MS validation test to validate the consistency of MS 
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variance of the national evaluation models of Interbull 
member countries already produces yearly MS means 
that, in principle, can be used to devise a test to detect 
bias in MS means. However, the documentation of the 
properties of such a test will be required. The adoption 
of GPS created a modest decrease in EGV, which was 
the outcome of 2 effects: a decrease in genetic variance 
due to genomic preselection and an inflation of EGV 
due to biased EMS. Our results indicate that the lower 
the heritability for the trait, the stronger the bias in 
EBV and EMS means and EGV. Hardly any effect of 
GPS of young bulls was detected in their daughters, 
but the situation is likely to change in the near future 
as genomic testing of females becomes more popular. 
The pedigree structure used in this study was from the 
progeny testing scheme. In fact, the effects of GPS on 
EBV and EMS means and EGV would probably have 
been greater had we applied a pedigree more closely 
resembling that of the real GPS scheme.
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Table 2. Distribution of the top 10% of the bulls into birth year classes 
1997 to 2002 according to true (TBV) and estimated (EBV) breeding 
values from the control and genomic preselection (GPS) schemes1

Year

Control

 

GPS

TBV EBV TBV EBV

2002 24.5 24.2 33.6 31.1
2001 26.8 27.4 36.3 35.3
2000 14.3 14.4 17.8 18.6
1999 12.5 12.5 4.6 5.7
1998 14.2 14.7 5.3 6.6
1997 7.8 6.8 2.4 2.6
1Results were averaged over 50 replicates. GPS started in 2000. A 
heritability of 0.25 was used.
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